
Web Hackers vs. The Auto
Industry: Critical
Vulnerabilities in Ferrari, BMW,

Blog

Sam Curry
Web Application Security Researcher

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

1 of 43 1/5/2023, 5:19 AM

https://samcurry.net/
https://samcurry.net/

Rolls Royce, Porsche, and More
January 3, 2023 samwcyo 

During the fall of 2022, a few friends and I took a road trip from Chicago, IL to

Washington, DC to attend a cybersecurity conference and (try) to take a break from

our usual computer work.

While we were visiting the University of Maryland, we came across a �eet of electric

scooters scattered across the campus and couldn't resist poking at the scooter's

mobile app. To our surprise, our actions caused the horns and headlights on all of

the scooters to turn on and stay on for 15 minutes straight.

When everything eventually settled down, we sent a report over to the scooter

manufacturer and became super interested in trying to more ways to make more

things honk. We brainstormed for a while, and then realized that nearly every

automobile manufactured in the last 5 years had nearly identical functionality. If an

attacker were able to �nd vulnerabilities in the API endpoints that vehicle telematics

systems used, they could honk the horn, �ash the lights, remotely track,

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

2 of 43 1/5/2023, 5:19 AM

https://samcurry.net/author/samwcyo/
https://samcurry.net/author/samwcyo/

lock/unlock, and start/stop vehicles, completely remotely.

At this point, we started a group chat and all began to work with the goal of �nding

vulnerabilities a�ecting the automotive industry. Over the next few months, we

found as many car-related vulnerabilities as we could. The following writeup details

our work exploring the security of telematic systems, automotive APIs, and the

infrastructure that supports it.

Findings Summary
During our engagement, we found the following vulnerabilities in the companies

listed below:

• Kia, Honda, In�niti, Nissan, Acura

• Fully remote lock, unlock, engine start, engine stop, precision locate, �ash

headlights, and honk vehicles using only the VIN number

• Fully remote account takeover and PII disclosure via VIN number (name,

phone number, email address, physical address)

• Ability to lock users out of remotely managing their vehicle, change

ownership

• For Kia’s speci�cally, we could remotely access the 360-view camera

and view live images from the car

• Mercedes-Benz

• Access to hundreds of mission-critical internal applications via

improperly con�gured SSO, including…

• Multiple Github instances behind SSO

• Company-wide internal chat tool, ability to join nearly any channel

• SonarQube, Jenkins, misc. build servers

• Internal cloud deployment services for managing AWS instances

• Internal Vehicle related APIs

• Remote Code Execution on multiple systems

• Memory leaks leading to employee/customer PII disclosure, account

access

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

3 of 43 1/5/2023, 5:19 AM

• Hyundai, Genesis

• Fully remote lock, unlock, engine start, engine stop, precision locate, �ash

headlights, and honk vehicles using only the victim email address

• Fully remote account takeover and PII disclosure via victim email address

(name, phone number, email address, physical address)

• Ability to lock users out of remotely managing their vehicle, change

ownership

• BMW, Rolls Royce

• Company-wide core SSO vulnerabilities which allowed us to access any

employee application as any employee, allowed us to…

• Access to internal dealer portals where you can query any VIN

number to retrieve sales documents for BMW

• Access any application locked behind SSO on behalf of any

employee, including applications used by remote workers and

dealerships

• Ferrari

• Full zero-interaction account takeover for any Ferrari customer account

• IDOR to access all Ferrari customer records

• Lack of access control allowing an attacker to create, modify, delete

employee “back o�ce” administrator user accounts and all user accounts

with capabilities to modify Ferrari owned web pages through the CMS

system

• Ability to add HTTP routes on api.ferrari.com (rest-connectors) and view

all existing rest-connectors and secrets associated with them

(authorization headers)

• Spireon

• Multiple vulnerabilities, including:

• Full administrator access to a company-wide administration panel

with ability to send arbitrary commands to an estimated 15.5

million vehicles (unlock, start engine, disable starter, etc.), read any

device location, and �ash/update device �rmware

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

4 of 43 1/5/2023, 5:19 AM

• Remote code execution on core systems for managing user

accounts, devices, and �eets. Ability to access and manage all data

across all of Spireon

• Ability to fully takeover any �eet (this would’ve allowed us to track &

shut o� starters for police, ambulances, and law enforcement

vehicles for a number of di�erent large cities and dispatch

commands to those vehicles, e.g. “navigate to this location”)

• Full administrative access to all Spireon products, including the

following…

• GoldStar - https://www.spireon.com/products/goldstar/

• LoJack - https://www.spireon.com/products/goldstar

/lojackgo/

• FleetLocate - https://www.spireon.com/products/�eetlocate-

for-�eet-managers/

• NSpire - https://www.spireon.com/spireon-nspire-platform/

• Trailer & Asset - https://www.spireon.com/solutions/trailer-

asset-managers/

• In total, there were…

• 15.5 million devices (mostly vehicles)

• 1.2 million user accounts (end user accounts, �eet managers,

etc.)

• Ford

• Full memory disclosure on production vehicle Telematics API discloses

• Discloses customer PII and access tokens for tracking and executing

commands on vehicles

• Discloses con�guration credentials used for internal services related

to Telematics

• Ability to authenticate into customer account and access all PII and

perform actions against vehicles

• Customer account takeover via improper URL parsing, allows an attacker

to completely access victim account including vehicle portal

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

5 of 43 1/5/2023, 5:19 AM

https://www.spireon.com/products/goldstar/
https://www.spireon.com/products/goldstar/
https://www.spireon.com/products/goldstar/
https://www.spireon.com/products/goldstar/lojackgo/
https://www.spireon.com/products/goldstar/lojackgo/
https://www.spireon.com/products/goldstar/lojackgo/
https://www.spireon.com/products/goldstar/lojackgo/
https://www.spireon.com/products/goldstar/lojackgo/
https://www.spireon.com/products/goldstar/lojackgo/
https://www.spireon.com/products/fleetlocate-for-fleet-managers/
https://www.spireon.com/products/fleetlocate-for-fleet-managers/
https://www.spireon.com/products/fleetlocate-for-fleet-managers/
https://www.spireon.com/products/fleetlocate-for-fleet-managers/
https://www.spireon.com/products/fleetlocate-for-fleet-managers/
https://www.spireon.com/products/fleetlocate-for-fleet-managers/
https://www.spireon.com/spireon-nspire-platform/
https://www.spireon.com/spireon-nspire-platform/
https://www.spireon.com/spireon-nspire-platform/
https://www.spireon.com/solutions/trailer-asset-managers/
https://www.spireon.com/solutions/trailer-asset-managers/
https://www.spireon.com/solutions/trailer-asset-managers/
https://www.spireon.com/solutions/trailer-asset-managers/
https://www.spireon.com/solutions/trailer-asset-managers/
https://www.spireon.com/solutions/trailer-asset-managers/

• Reviver

• Full super administrative access to manage all user accounts and vehicles

for all Reviver connected vehicles. An attacker could perform the

following:

• Track the physical GPS location and manage the license plate for all

Reviver customers (e.g. changing the slogan at the bottom of the

license plate to arbitrary text)

• Update any vehicle status to “STOLEN” which updates the license

plate and informs authorities

• Access all user records, including what vehicles people owned, their

physical address, phone number, and email address

• Access the �eet management functionality for any company, locate

and manage all vehicles in a �eet

• Porsche

• Ability to send retrieve vehicle location, send vehicle commands, and

retrieve customer information via vulnerabilities a�ecting the vehicle

Telematics service

• Toyota

• IDOR on Toyota Financial that discloses the name, phone number, email

address, and loan status of any Toyota �nancial customers

• Jaguar, Land Rover

• User account IDOR disclosing password hash, name, phone number,

physical address, and vehicle information

• SiriusXM

• Leaked AWS keys with full organizational read/write S3 access, ability to

retrieve all �les including (what appeared to be) user databases, source

code, and con�g �les for Sirius

Vulnerability Writeups

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

6 of 43 1/5/2023, 5:19 AM

(1) Full Account Takeover on BMW and Rolls Royce
via Miscon�gured SSO

While testing BMW assets, we identi�ed a custom SSO portal for employees and

contractors of BMW. This was super interesting to us, as any vulnerabilities

identi�ed here could potentially allow an attacker to compromise any account

connected to all of BMWs assets.

For instance, if a dealer wanted to access the dealer portal at a physical BMW

dealership, they would have to authenticate through this portal. Additionally, this

SSO portal was used to access internal tools and related devops infrastructure.

The �rst thing we did was �ngerprint the host using OSINT tools like gau and �uf.

After a few hours of fuzzing, we identi�ed a WADL �le which exposed API endpoints

on the host via sending the following HTTP request:

GET /rest/api/application.wadl HTTP/1.1

Host: xpita.bmwgroup.com

The HTTP response contained all available REST endpoints on the xpita host. We

began enumerating the endpoints and sending mock HTTP requests to see what

functionality was available.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

7 of 43 1/5/2023, 5:19 AM

One immediate �nding was that we were able to query all BMW user accounts via

sending asterisk queries in the user �eld API endpoint. This allowed us to enter

something like “sam*” and retrieve the user information for a user named

“sam.curry” without having to guess the actual username.

HTTP Request

GET /reset/api/users/example* HTTP/1.1

Host: xpita.bmwgroup.com

HTTP Response

HTTP/1.1 200 OK

Content-type: application/json

{“id”:”redacted”,”firstName”:”Example”,”lastName”:”User”,”userName”:”example.user”

Once we found this vulnerability, we continued testing the other accessible API

endpoints. One particularly interesting one which stood out immediately was the

“/rest/api/chains/accounts/:user_id/totp” endpoint. We noticed the word “totp”

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

8 of 43 1/5/2023, 5:19 AM

which usually stood for one-time password generation.

When we sent an HTTP request to this endpoint using the SSO user ID gained from

the wildcard query paired with the TOTP endpoint, it returned a random 7-digit

number. The following HTTP request and response demonstrate this behavior:

HTTP Request

GET /rest/api/chains/accounts/unique_account_id/totp HTTP/1.1

Host: xpita.bmwgroup.com

HTTP Response

HTTP/1.1 200 OK

Content-type: text/plain

9373958

For whatever reason, it appeared that this HTTP request would generate a TOTP for

the user’s account. We guessed that this interaction worked with the “forgot

password” functionality, so we found an example user account by querying

“example*” using our original wildcard �nding and retrieving the victim user ID.

After retrieving this ID, we initiated a reset password attempt for the user account

until we got to the point where the system requested a TOTP code from the user’s

2FA device (e.g. email or phone).

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

9 of 43 1/5/2023, 5:19 AM

At this point, we retrieved the TOTP code generated from the API endpoint and

entered it into the reset password con�rmation �eld.

It worked! We had reset a user account, gaining full account takeover on any BMW

employee and contractor user.

At this point, it was possible to completely take over any BMW or Rolls Royce

employee account and access tools used by those employees.

To demonstrate the impact of the vulnerability, we simply Googled “BMW dealer

portal” and used our account to access the dealer portal used by sales associates

working at physical BMW and Rolls Royce dealerships.

After logging in, we observed that the demo account we took over was tied to an

actual dealership, and we could access all of the functionality that the dealers

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

10 of 43 1/5/2023, 5:19 AM

themselves had access to. This included the ability to query a speci�c VIN number

and retrieve sales documents for the vehicle.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

11 of 43 1/5/2023, 5:19 AM

With our level of access, there was a huge amount of functionality we could’ve

performed against BMW and Rolls Royce customer accounts and customer vehicles.

We stopped testing at this point and reported the vulnerability.

The vulnerabilities reported to BMW and Rolls Royce have since been �xed.

(2) Remote Code Execution and Access to Hundreds
of Internal Tools on Mercedes-Benz and Rolls Royce
via Miscon�gured SSO

Early in our testing, someone in our group had purchased a Mercedes-Benz vehicle

and so we began auditing the Mercedes-Benz infrastructure. We took the same

approach as BMW and began testing the Mercedes-Benz employee SSO.

We weren’t able to �nd any vulnerabilities a�ecting the SSO portal itself, but by

exploring the SSO website we observed that they were running some form of LDAP

for the employee accounts. Based on our high level understanding of their

infrastructure, we guessed that the individual employee applications used a

centralized LDAP system to authenticate users. We began exploring each of these

websites in an attempt to �nd a public registration so we could gain SSO credentials

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

12 of 43 1/5/2023, 5:19 AM

to access, even at a limited level, the employee applications.

After fuzzing random sites for a while, we eventually found the “umas.mercedes-

benz.com” website which was built for vehicle repair shops to request speci�c tools

access from Mercedes-Benz. The website had public registration enabled as it was

built for repair shops and appeared to write to the same database as the core

employee LDAP system.

We �lled out all the required �elds for registration, created a user account, then

used our recon data to identify sites which redirected to the Mercedes-Benz SSO.

The �rst one we attempted was a pretty obvious employee tool, it was

“git.mercedes-benz.com”, short for Github. We attempted to use our user

credentials to sign in to the Mercedes-Benz Github and saw that we were able to

login. Success!

The Mercedes-Benz Github, after authenticating, asked us to set up 2FA on our

account so we could access the app. We installed the 2FA app and added it to our

account, entered our code, then saw that we were in. We had access to

“git.mercedes-benz.com” and began looking around.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

13 of 43 1/5/2023, 5:19 AM

After a few minutes, we saw that the Github instance had internal documentation

and source code for various Mercedes-Benz projects including the Mercedes Me

Connect app which was used by customers to remotely connect to their vehicles.

The internal documentation gave detailed instructions for employees to follow if

they wanted to build an application for Mercedes-Benz themselves to talk to

customer vehicles and the speci�c steps one would have to take to talk to customer

vehicles.

At this point, we reported the vulnerability, but got some pushback after a few days

of waiting on an email response. The team seemed to misunderstand the impact, so

they asked us to demonstrate further impact.

We used our employee account to login to numerous applications which contained

sensitive information and achieved remote code execution via exposed actuators,

spring boot consoles, and dozens of sensitive internal applications used by

Mercedes-Benz employees. One of these applications was the Mercedes-Benz

Mattermost (basically Slack). We had permission to join any channel, including

security channels, and could pose as a Mercedes-Benz employee who could ask

whatever questions necessary for an actual attacker to elevate their privileges

across the Benz infrastructure.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

14 of 43 1/5/2023, 5:19 AM

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

15 of 43 1/5/2023, 5:19 AM

To give an overview, we could access the following services:

• Multiple employee-only Githubs with sensitive information containing

documentation and con�guration �les for multiple applications across the

Mercedes-Benz infrastructure

• Spring boot actuators which lead to remote code execution, information

disclosure, on sensitive employee and customer facing applications

Jenkins instances

• AWS and cloud-computing control panels where we could request, manage,

and access various internal systems

• XENTRY systems used to communicate with customer vehicles

• Internal OAuth and application-management related functionality for

con�guring and managing internal apps

• Hundreds of miscellaneous internal services

(3) Full Vehicle Takeover on Kia via Deprecated

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

16 of 43 1/5/2023, 5:19 AM

Dealer Portal

When we looked at Kia, we noticed how its vehicle enrollment process was di�erent

from its parent company Hyundai. We mapped out all of the domains and we came

across the “kdelaer.com” domain where dealers are able to register for an account

to activate Kia connect for customers who purchase vehicles. At this point, we found

the domain “kiaconnect.kdealer.com” which allowed us to enroll an arbitrary VIN

but required a valid session to work.

While looking at the website’s main.js code, we observed the following authorization

functionality for generating the token required to access the website functionality:

validateSSOToken() {

const e = this.geturlParam("token"),

i = this.geturlParam("vin");

return this.postOffice({

token: e,

vin: i

}, "/prof/gbl/vsso", "POST", "preLogin").pipe(ye(this.processSuccessData), Nn(this

}

Since we didn’t have valid authorization credentials, we continued to search

through the JavaScript �le until �nding the “prelogin” header. This header, when

sent, allowed us to initiate enrollment for an arbitrary VIN number.

Although we were able to bypass the authorization check for VIN ownership, the

website continued throwing errors for an invalid session.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

17 of 43 1/5/2023, 5:19 AM

To bypass this, we took a session token from “owners.kia.com” (the site used for

customers to remotely connect to their vehicles) and appended it to our request to

pair the VIN number to a customer account here:

Something really interesting to note: for every Kia account that we queried, the

server returned an associated pro�le with the email “daspike11@yahoo.com”. We’re

not sure if this email address has access to the user account, but based on our

understanding of the Kia website it appeared that the email address was connected

to every account that we had searched. We’ve asked the Kia team for clari�cation

but haven’t heard back on what exactly this is.

Now that we had a valid vehicle initialization session, we could use the JSON

returned in the HTTP response returned from pairing the customer’s account to

continue the vehicle takeover. We would use the “prelogin” header once again to

generate a dealer token (intended to be accessed by Kia dealers themselves) to pair

any vehicle to the attacker’s customer account.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

18 of 43 1/5/2023, 5:19 AM

mailto:daspike11@yahoo.com
mailto:daspike11@yahoo.com
mailto:daspike11@yahoo.com

Lastly, we can just head to the link to �nish the activation and enrollment which you

can see below here.

The attacker will receive a link via email on their Kia customer account after the

above dealer pairing process is completed. The activation portal below is the �nal

step to pair the Kia vehicle to the attacker’s customer account.

Lastly, after we’ve �lled out the above form, it takes about 1-2 minutes for Kia

Connect to fully activate and give full access to send lock, unlock, remote start,

remote stop, locate, and (most interestingly) remotely access vehicle cameras!

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

19 of 43 1/5/2023, 5:19 AM

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

20 of 43 1/5/2023, 5:19 AM

(4) Full Account Takeover on Ferrari and Arbitrary
Account Creation allows Attacker to Access, Modify,
and Delete All Customer Information and Access
Administrative CMS Functionality to Manage Ferrari
Websites

When we began targeting Ferrari, we mapped out all domains under the publicly

available domains like “ferrari.com” and browsed around to see what was accessible.

One target we found was “api.ferrari.com”, a domain which o�ered both customer

facing and internal APIs for Ferrari systems. Our goal was to get the highest level of

access possible for this API.

We analyzed the JavaScript present on several Ferrari subdomains that looked like

they were for use by Ferrari dealers. These subdomains included `cms-

dealer.ferrari.com`, `cms-new.ferrari.com` and `cms-dealer.test.ferrari.com`.

One of the patterns we notice when testing web applications is poorly implemented

single sign on functionality which does not restrict access to the underlying

application. This was the case for the above subdomains. It was possible to extract

the JavaScript present for these applications, allowing us to understand the backend

API routes in use.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

21 of 43 1/5/2023, 5:19 AM

When reverse engineering JavaScript bundles, it is important to check what

constants have been de�ned for the application. Often these constants contain

sensitive credentials or at the very least, tell you where the backend API is, that the

application talks to.

For this application, we noticed the following constants were set:

const i = {

 production: !0,

 envName: "production",

 version: "0.0.0",

 build: "20221223T162641363Z",

 name: "ferrari.dws-preowned.backoffice",

 formattedName: "CMS SPINDOX",

 feBaseUrl: "https://{{domain}}.ferraridealers.com/",

 fePreownedBaseUrl: "https://{{domain}}.ferrari.com/",

 apiUrl: "https://api.ferrari.com/cms/dws/back-office/",

 apiKey: "REDACTED",

 s3Bucket: "ferrari-dws-preowned-pro",

 cdnBaseUrl: "https://cdn.ferrari.com/cms/dws/media/",

 thronAdvUrl: "https://ferrari-app-gestioneautousate.thron.

 }

From the above constants we can understand that the base API URL is

`https://api.ferrari.com/cms/dws/back-o�ce/` and a potential API key for this API is

`REDACTED`.

Digging further into the JavaScript we can look for references to `apiUrl` which will

inform us as to how this API is called and how the API key is being used. For

example, the following JavaScript sets certain headers if the API URL is being called:

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

22 of 43 1/5/2023, 5:19 AM

})).url.startsWith(x.a.apiUrl) && !["/back-office/dealers", "/back-office/dealer-s

 headers: e.headers.set("Authorization", "" + (

 })).clone({

 headers: e.headers.set("x-api-key", "" + a)

 }));

All the elements needed for this discovery were conveniently tucked away in this

JavaScript �le. We knew what backend API to talk to and its routes, as well as the API

key we needed to authenticate to the API.

Within the JavaScript, we noticed an API call to `/cms/dws/back-o�ce/auth/bo-

users`. When requesting this API through Burp Suite, it leaked all of the users

registered for the Ferrari Dealers application. Furthermore, it was possible to send a

POST request to this endpoint to add ourselves as a super admin user.

While impactful, we were still looking for a vulnerability that a�ected the broader

Ferrari ecosystem and every end user. Spending more time deconstructing the

JavaScript, we found some API calls were being made to `rest-connectors`:

return t.prototype.getConnectors = function() {

 return this.httpClient.get("rest-connectors")

}, t.prototype.getConnectorById = function(t) {

 return this.httpClient.get("rest-connectors/" + t)

}, t.prototype.createConnector = function(t) {

 return this.httpClient.post("rest-connectors", t)

}, t.prototype.updateConnector = function(t, e) {

 return this.httpClient.put("rest-connectors/" + t, e)

}, t.prototype.deleteConnector = function(t) {

 return this.httpClient.delete("rest-connectors/" + t)

}, t.prototype.getItems = function() {

 return this.httpClient.get("rest-connector-models")

}, t.prototype.getItemById = function(t) {

 return this.httpClient.get("rest-connector-models/" + t)

}, t.prototype.createItem = function(t) {

 return this.httpClient.post("rest-connector-models", t)

}, t.prototype.updateItem = function(t, e) {

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

23 of 43 1/5/2023, 5:19 AM

 return this.httpClient.put("rest-connector-models/" + t, e)

}, t.prototype.deleteItem = function(t) {

 return this.httpClient.delete("rest-connector-models/" + t)

}, t

The following request unlocked the �nal piece in the puzzle. Sending the following

request revealed a treasure trove of API credentials for Ferrari: :

GET /cms/dws/back-office/rest-connector-models HTTP/1.1

To explain what this endpoint's purpose was: Ferrari had con�gured a number of

backend APIs that could be communicated with by hitting speci�c paths. When

hitting this API endpoint, it returned this list of API endpoints, hosts and

authorization headers (in plain text).

This information disclosure allowed us to query Ferrari’s production API to access

the personal information of any Ferrari customer. In addition to being able to view

these API endpoints, we could also register new rest connectors or modify existing

ones.

HTTP Request

GET /core/api/v1/Users?email=ian@ian.sh HTTP/1.1

Host: fcd.services.ferrari.com

HTTP Response

HTTP/1.1 200 OK

Content-type: application/json

…"guid":"2d32922a-28c4-483e-8486-7c2222b7b59c","email":"ian@ian.sh

The API key and production endpoints that were disclosed using the previous

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

24 of 43 1/5/2023, 5:19 AM

staging API key allowed an attacker to access, create, modify, and delete any

production user account. It additionally allowed an attacker to query users via email

address or nickname.

Additionally, an attacker could POST to the “/core/api/v1/Users/:id/Roles” endpoint

to edit their user roles, setting themselves to have super-user permissions or

become a Ferrari owner.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

25 of 43 1/5/2023, 5:19 AM

This vulnerability would allow an attacker to access, modify, and delete any Ferrari

customer account with access to manage their vehicle pro�le.

(5) SQL Injection and Regex Authorization Bypass on
Spireon Systems allows Attacker to Access, Track,
and Send Arbitrary Commands to 15 million
Telematics systems and Additionally Fully Takeover
Fleet Management Systems for Police Departments,
Ambulance Services, Truckers, and Many Business
Fleet Systems

When identifying car-related targets to hack on, we found the company Spireon. In

the early 90s and 2000s, there were a few companies like OnStar, Goldstar, and

FleetLocate which were standalone devices which were put into vehicles to track

and manage them. The devices have the capabilities to be tracked and receive

arbitrary commands, e.g. locking the starter so the vehicle cannot start.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

26 of 43 1/5/2023, 5:19 AM

Sometime in the past, Spireon had acquired many GPS Vehicle Tracking and

Management Companies and put them under the Spireon parent company.

We read through the Spireon marketing and saw that they claimed to have over 15

million connected vehicles. They o�ered services directly to customers and

additionally many services through their subsidiary companies like OnStar.

We decided to research them as, if an attacker were able to compromise the

administration functionality for these devices and �eets, they would be able to

perform actions against over 15 million vehicles with very interesting functionalities

like sending a cities police o�cers a dispatch location, disabling vehicle starters, and

accessing �nancial loan information for dealers.

Our �rst target for this was very obvious: admin.spireon.com

The website appeared to be a very out of date global administration portal for

Spireon employees to authenticate and perform some sort of action. We attempted

to identify interesting endpoints which were accessible without authorization, but

kept getting redirected back to the login.

Since the website was so old, we tried the trusted manual SQL injection payloads

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

27 of 43 1/5/2023, 5:19 AM

but were kicked out by a WAF that was installed on the system

We switched to a much simpler payload: sending an apostrophe, seeing if we got an

error, then sending two apostrophes and seeing if we did not get an error. This

worked! The system appeared to be reacting to sending an odd versus even number

of apostrophes. This indicated that our input in both the username and password

�eld was being passed to a system which could likely be vulnerable to some sort of

SQL injection attack.

For the username �eld, we came up with a very simple payload:

victim' #

The above payload was designed to simply cut o� the password check from the SQL

query. We sent this HTTP request to Burp Suite’s intruder with a common username

list and observed that we received various 301 redirects to “/dashboard” for the

username “administrator” and “admin”.

After manually sending the HTTP request using the admin username, we observed

that we were authenticated into the Spireon administrator portal as an

administrator user. At this point, we browsed around the application and saw many

interesting endpoints.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

28 of 43 1/5/2023, 5:19 AM

The functionality was designed to manage Spireon devices remotely. The

administrator user had access to all Spireon devices, including those of OnStar,

GoldStar, and FleetLocate. We could query these devices and retrieve the live

location of whatever the devices were installed on, and additionally send arbitrary

commands to these devices. There was additional functionality to overwrite the

device con�guration including what servers it reached out to download updated

�rmware.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

29 of 43 1/5/2023, 5:19 AM

Using this portal, an attacker could create a malicious Spireon package, update the

vehicle con�guration to call out to the modi�ed package, then download and install

the modi�ed Spireon software.

At this point, an attacker could backdoor the Spireon device and run arbitrary

commands against the device.

Since these devices were very ubiquitous and were installed on things like tractors,

golf carts, police cars, and ambulances, the impact of each device di�ered. For some,

we could only access the live GPS location of the device, but for others we could

disable the starter and send police and ambulance dispatch locations.

We reported the vulnerability immediately, but during testing, we observed an HTTP

500 error which disclosed the API URL of the backend API endpoint that the

“admin.spireon.com” service reached out to. Initially, we dismissed this as we

assumed it was internal, but after circling back we observed that we could hit the

endpoint and it would trigger an HTTP 403 forbidden error.

Our goal now was seeing if we could �nd some sort of authorization bypass on the

host and what endpoints were accessible. By bypassing the administrator UI, we

could directly reach out to each device and have direct queries for vehicles and user

accounts via the backend API calls.

We fuzzed the host and eventually observed some weird behavior:

By sending any string with “admin” or “dashboard”, the system would trigger an

HTTP 403 forbidden response, but would return 404 if we didn’t include this string.

As an example, if we attempted to load “/anything-admin-anything” we’d receive 403

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

30 of 43 1/5/2023, 5:19 AM

forbidden, while if we attempted to load “/anything-anything” it would return a 404.

We took the blacklisted strings, put them in a list, then attempted to enumerate the

speci�c endpoints with fuzzing characters (%00 to %FF) stuck behind the �rst and

last characters.

During scanning, we saw that the following HTTP requests would return a 200 OK

response:

GET /%0dadmin

GET /%0ddashboard

Through Burp Suite, we sent the HTTP response to our browser and observed the

response: it was a full administrative portal for the core Spireon app. We quickly set

up a match and replace rule to modify GET /admin and GET /dashboard to the

endpoints with the %0d pre�x.

After setting up this rule, we could browse to “/admin” or “/dashboard” and explore

the website without having to perform any additional steps. We observed that there

were dozens of endpoints which were used to query all connected vehicles, send

arbitrary commands to connected vehicles, and view all customer tenant accounts,

�eet accounts, and customer accounts. We had access to everything.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

31 of 43 1/5/2023, 5:19 AM

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

32 of 43 1/5/2023, 5:19 AM

At this point, a malicious actor could backdoor the 15 million devices, query what

ownership information was associated with a speci�c VIN, retrieve the full user

information for all customer accounts, and invite themselves to manage any �eet

which was connected to the app.

For our proof of concept, we invited ourselves to a random �eet account and saw

that we received an invitation to administrate a US Police Department where we

could track the entire police �eet.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

33 of 43 1/5/2023, 5:19 AM

(6) Mass Assignment on Reviver allows an Attacker
to Remotely Track and Overwrite the Virtual
License Plates for All Reviver Customers, Track and
Administrate Reviver Fleets, and Access, Modify,
and Delete All User Information

In October, 2022, California announced that it had legalized digital license plates.

We researched this for a while and found that most, if not all of the digital license

plates, were done through a company called Reviver.

If someone wanted a digital license plate, they’d buy the virtual Reviver license plate

which included a SIM card for remotely tracking and updating the license plate.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

34 of 43 1/5/2023, 5:19 AM

Customers who uses Reviver could remotely update their license plates slogan,

background, and additionally report if the car had been stolen via setting the plate

tag to “STOLEN”.

Since the license plate could be used to track vehicles, we were super interested in

Reviver and began auditing the mobile app. We proxied the HTTP tra�c and saw

that all API functionality was done on the "pr-api.rplate.com" website. After creating

a user account, our user account was assigned to a unique “company” JSON object

which allowed us to add other sub-users to our account.

The company JSON object was super interesting as we could update many of the

JSON �elds within the object. One of these �elds was called “type” and was default

set to “CONSUMER”. After noticing this, we dug through the app source code in

hopes that we could �nd another value to set it to, but were unsuccessful.

At this point, we took a step back and wondered if there was an actual website we

could talk to versus proxying tra�c through the mobile app. We looked online for a

while before getting the idea to perform a reset password on our account which

gave us a URL to navigate to.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

35 of 43 1/5/2023, 5:19 AM

Once we opened the password reset URL, we observed that the website had tons of

functionality including the ability to administer vehicles, �eets, and user accounts.

This was super interesting as we now had a lot more API endpoints and functionality

to access. Additionally, the JavaScript on the website appeared to have the names of

the other roles that our user account could be (e.g. specialized names for user,

moderator, admin, etc.)

We queried the “CONSUMER” string in the JavaScript and saw that there were other

roles that were de�ned in the JavaScript. After attempting to update our “role”

parameter to the disclosed “CORPORATE” role, we refreshed out pro�le metadata,

then saw that it was successful! We were able to change our roles to ones other than

the default user account, opening the door to potential privilige escalation

vulnerabilities.

It appeared that, even though we had updated our account to the "CORPORATE"

role, we were still receiving authorization vulnerabilities when logging into the

website. We thought for a while until realizing that we could invite users to our

modi�ed account which had the elevated role, which may then grant the invited

users the required permissions since they were invited via an intended way versus

mass assigning an account to an elevated role.

After inviting a new account, accepting the invitation, and logging into the account,

we observed that we no longer received authorization errors and could access �eet

management functionality. This meant that we could likely (1) mass assign our

account to an even higher elevated role (e.g. admin), then (2) invite a user to our

account which would be assigned the appropriate permissions.

This perplexed us as there was likely some administration group which existed in

the system but that we had not yet identi�ed. We brute forced the “type” parameter

using wordlists until we noticed that setting our group to the number “4” had

updated our role to “REVIVER_ROLE”. It appeared that the roles were indexed to

numbers, and we could simply run through the numbers 0-100 and �nd all the roles

on the website.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

36 of 43 1/5/2023, 5:19 AM

The “0” role was the string “REVIVER”, and after setting this on our account and re-

inviting a new user, we logged into the website normally and observed that the UI

was completely broken and we couldn’t click any buttons. From what we could

guess, we had the administrator role but were accessing the account using the

customer facing frontend website and not the appropriate administrator frontend

website. We would have to �nd the endpoints used by administrators ourselves.

Since our administrator account theoretically had elevated permissions, our �rst

test was simply querying a user account and seeing if we could access someone

else's data: this worked!

We could take any of the normal API calls (viewing vehicle location, updating vehicle

plates, adding new users to accounts) and perform the action using our super

administrator account with full authorization.

At this point, we reported the vulnerability and observed that it was patched in

under 24 hours. An actual attacker could remotely update, track, or delete anyone’s

REVIVER plate. We could additionally access any dealer (e.g. Mercedes-Benz

dealerships will often package REVIVER plates) and update the default image used

by the dealer when the newly purchased vehicle still had DEALER tags.

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

37 of 43 1/5/2023, 5:19 AM

The Reviver website also o�ered �eet management functionality which we had full

access to.

(7) Full Remote Vehicle Access and Full Account
Takeover a�ecting Hyundai and Genesis

This vulnerability was written up on Twitter and can be accessed on the following

thread:

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

38 of 43 1/5/2023, 5:19 AM

(8) Full Remote Vehicle Access and Full Account
Takeover a�ecting Honda, Nissan, In�niti, Acura

This vulnerability was written up on Twitter and can be accessed on the following

thread:

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

39 of 43 1/5/2023, 5:19 AM

(9) Full Vehicle Takeover on Nissan via Mass
Assignment

This vulnerability was written up on Twitter and can be accessed on the following

thread:

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

40 of 43 1/5/2023, 5:19 AM

Credits
The following people contributed towards this project:

• Sam Curry (https://twitter.com/samwcyo)

• Neiko Rivera (https://twitter.com/_specters_)

• Brett Buerhaus (https://twitter.com/bbuerhaus)

• Maik Robert (https://twitter.com/xEHLE_)

• Ian Carroll (https://twitter.com/iangcarroll)

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

41 of 43 1/5/2023, 5:19 AM

https://twitter.com/samwcyo
https://twitter.com/samwcyo
https://twitter.com/_specters_
https://twitter.com/_specters_
https://twitter.com/bbuerhaus
https://twitter.com/bbuerhaus
https://twitter.com/xEHLE_
https://twitter.com/xEHLE_
https://twitter.com/iangcarroll
https://twitter.com/iangcarroll

← Exploiting Web3’s Hidden Attack Surface:

Universal XSS on Netlify’s Next.js Library

Search …

Recent Posts

Web Hackers vs. The

Auto Industry:

Critical

Vulnerabilities in

Ferrari, BMW, Rolls

Royce, Porsche, and

More

Exploiting Web3’s

Hidden Attack

Surface: Universal

XSS on Netlify’s

Next.js Library

Hacking Chess.com

and Accessing 50

• Justin Rhinehart (https://twitter.com/sshell_)

• Shubham Shah (https://twitter.com/infosec_au)

Special thanks to the following people who helped create this blog post:

• Ben Sadeghipour (https://twitter.com/nahamsec)

• Joseph Thacker (https://twitter.com/rez0__)

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

42 of 43 1/5/2023, 5:19 AM

https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/web-hackers-vs-the-auto-industry/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/universal-xss-on-netlifys-next-js-library/
https://samcurry.net/hacking-chesscom/
https://samcurry.net/hacking-chesscom/
https://samcurry.net/hacking-chesscom/
https://samcurry.net/hacking-chesscom/
https://twitter.com/sshell_
https://twitter.com/sshell_
https://twitter.com/infosec_au
https://twitter.com/infosec_au
https://twitter.com/nahamsec
https://twitter.com/nahamsec
https://twitter.com/rez0__
https://twitter.com/rez0__

Million Customer

Records

Archives

January 2023

September 2022

December 2020

October 2020

June 2020

May 2020

April 2020

November 2019

September 2019

July 2019

December 2018

July 2018

May 2018

November 2017

August 2017

June 2017

May 2017

Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari... https://samcurry.net/web-hackers-vs-the-auto-industry/

43 of 43 1/5/2023, 5:19 AM

https://samcurry.net/hacking-chesscom/
https://samcurry.net/hacking-chesscom/
https://samcurry.net/hacking-chesscom/
https://samcurry.net/hacking-chesscom/
https://samcurry.net/2023/01/
https://samcurry.net/2023/01/
https://samcurry.net/2022/09/
https://samcurry.net/2022/09/
https://samcurry.net/2020/12/
https://samcurry.net/2020/12/
https://samcurry.net/2020/10/
https://samcurry.net/2020/10/
https://samcurry.net/2020/06/
https://samcurry.net/2020/06/
https://samcurry.net/2020/05/
https://samcurry.net/2020/05/
https://samcurry.net/2020/04/
https://samcurry.net/2020/04/
https://samcurry.net/2019/11/
https://samcurry.net/2019/11/
https://samcurry.net/2019/09/
https://samcurry.net/2019/09/
https://samcurry.net/2019/07/
https://samcurry.net/2019/07/
https://samcurry.net/2018/12/
https://samcurry.net/2018/12/
https://samcurry.net/2018/07/
https://samcurry.net/2018/07/
https://samcurry.net/2018/05/
https://samcurry.net/2018/05/
https://samcurry.net/2017/11/
https://samcurry.net/2017/11/
https://samcurry.net/2017/08/
https://samcurry.net/2017/08/
https://samcurry.net/2017/06/
https://samcurry.net/2017/06/
https://samcurry.net/2017/05/
https://samcurry.net/2017/05/

